翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Sokhatsky–Weierstrass theorem : ウィキペディア英語版
Sokhotski–Plemelj theorem

The Sokhotski–Plemelj theorem (Polish spelling is ''Sochocki'') is a theorem in complex analysis, which helps in evaluating certain integrals. The real-line version of it (see below) is often used in physics, although rarely referred to by name. The theorem is named after Julian Sochocki, who proved it in 1868, and Josip Plemelj, who rediscovered it as a main ingredient of his solution of the Riemann-Hilbert problem in 1908.
== Statement of the theorem ==

Let ''C'' be a smooth closed simple curve in the plane, and ''φ'' an analytic function on ''C''.
Then the Cauchy-type integral
: \frac \int_C\frac,
defines two analytic functions of ''z'', ''φ''i inside ''C'' and ''φ''e outside. Sokhotski–Plemelj formulas relate the boundary values of these two analytic functions at a point ''z'' on ''C'' and the Cauchy principal value \mathcal of the integral:
: \phi_i(z)=\frac\mathcal\int_C\frac+\frac\varphi(z), \,
: \phi_e(z)=\frac\mathcal\int_C\frac-\frac\varphi(z). \,
Subsequent generalizations relaxed the smoothness requirements on curve ''C'' and the function ''φ''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Sokhotski–Plemelj theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.